g
8

NASA TECHNICAL

_ NASA T™ X-53130
MEMORANDUM

SEPTEMBER 17, 1964

&

-

3 . N65-11058

b s  (ACCESSION NUMBER) (THRU)

= : 2/ £
< 3

2 P _ZMX 570 30

A SYSTEM OF EQUATIONS FOR OPTIMIZED POWERED
FLIGHT TRAJECTORIES

by GARY McDANIEL .
Aero-Astrodynamics Laboratory

NASA
George C. Marshall Y,
Space Flight Center, );E.CROHLM $ ﬁLiﬁ-———‘

Huntsville, Alabama ‘x



TECHNICAL MEMORANDUM X-53130

A SYSTEM OF EQUATIONS FOR OPTIMIZED POWERED FLIGHT TRAJECTORIES

By
Gary McDaniel
George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

)103/9
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angle of attack or the product of the dynamic pressure and the magni-
tude of the angle of attack. The necessary conditions for optimality
are given exclusive of derivation. Also, a computational scheme is

given suitable for a digital computer program. ;;ﬁz%/(/’

NASA - GEORGE C, MARSHALL SPACE FLIGHT CENTER



NASA - GEORGE C, MARSHALL SPACE FLIGHT CENTER

Technical Memorandum X-53130

September 17, 1964

A SYSTEM OF EQUATIONS FOR OPTIMIZED POWERED FLIGHT TRAJECTORIES

By

Gary McDaniel

APPLIED GUIDANCE AND FLIGHT MECHANICS BRANCH
DYNAMICS AND FLIGHT MECHANICS DIVISION
AERO-ASTRODYNAMICS LABORATORY




11,
III,

IV,

TABLE OF CONTENTS

INTRODUmION........-........‘.... ..... ® 9 © 00 00D OSB8OS Ee P es
DERIVATION OF THE EQUATIONS OF MOTION....ccoccccccascscces
CALCULUS OF VARIATIONS FORMULATION....cccocsecsccccncssosne

APPLICATIONS FOR A DIGITAL COMPUTER PROGRAM.....cccs00e0as
A. Application without Inequality ConstraintS....cecsceee

. Input Data NEEded...-...-......-.-.....--...-oo...

. Trajectory Integration and Isolation.....cceceeves
. Additional Equations Useful in Trajectory Analysis

W

B. Application with q|C| COnStraint.....eeeceeececsccsccees
C. Application with Angle-of-Attack Constraint.....cce.e.

mNCIlUSIONSo.o.....ooo.-oo.ooo..oooo.ooo..o...oo.o.o.o.o.o

iii

. Preload ComputationS...ccececesssccccsoscocscscnsns -

Page

16
16

16
16
19
21

22
23

23



DEFINITION OF SYMBOLS
Symbol Definition and Units
Fv vacuum thrust (kg)
Ae engine exit area (m%)
A reference area (m?)
ISpv vacuum specific impulse (sec)
CDo drag coefficient
C& normal force coefficient
] launch latitude (deg)
A, launch azimuth (deg)
w earth's rotational velocity in the equatorial plane
(rad/sec)
w' earth's rotational velocity in the flight plane (rad/sec)
P atmospheric pressure
o) atmospheric density
F thrust (kg)
D ' drag fofce (kg)
N normal force (kg)
g gravitational acceleration (m/sec?®)
M gravitational constant (m®/sec®)
r radius from center of earth to vehicle (m)
Vg earth-fixed velocity (m/sec)

iv




DEFINITION OF SYMBOLS (Continued)

Symbol Definition and Units

3 earth-fixed path angle measured from local vertical
to velocity vector (deg)

QE ' range angle measured from earth-fixed launch point
to radius vector (deg)

m mass of vehicle (kg-secZ/m))

o angle of attack (deg)

& angle of attack rate (deg/sec)

Ro earth's radius (m)

go gravitational acceleration at the surface of the

earth (m/sec?®)
M Mach

X attitude angle measured from the earth-fixed launch
point to the vehicle's thrust vector (deg)

x* space~-fixed attitude angle (deg)
Q* space-fixed range angle (deg)
XXXE eérth-fixed range (m)

Xxx* space-fixed range (m)

Ay 1 Lagrangian multipliers

t time (sec)

x* space-fixed coordinate system
iE earth-fixed coordinate system
) d/dt

( )o initial quantity




DEFINITION OF SYMBOLS (Cont'd)

Symbol Definition and Units

( )f final quantity

(-)' vector quantity

i, 3, k, 2, ey, &4 unit vectors defined in Section II

C,y constant to convert mass units to pounds
Co constant to convert kilograms to pounds

vi




TECHNICAL MEMORANDUM X-53130
A SYSTEM OF EQUATIONS FOR OPTIMIZED POWERED FLIGHT TRAJECTORIES
SUMMARY

The equations of motion for a vehicle with thrust, lift, and drag
forces, and a Newtonian gravitational force are derived in an earth-
fixed polar coordinate system., This system of equations forms the dif-
ferential equations of constraint in the calculus of variations formulation
of minimizing flight time between two sets of boundary conditions with
inequality constraints imposed on the magnitude of the angle of attack
or the product of the dynamic pressure and the magnitude of the angle
of attack. The necessary conditions for optimality are given exclusive
of derivation. Also, a computational scheme is given suitable for a
digital computer program.

Normally while in the atmosphere a vehicle is constrained to fly
a non-lifting trajectory, after tilting has been initiated shortly after
launch, in order to minimize the structural stresses associated with
appreciable angles of attack. In essence, this implies that the aero-
dynamic 1ift is sacrificed; this may decrease the performance of the
vehicle depending on the lift-to-drag ratio. The problem of employing
an angle of attack during an atmospheric flight can be used if constraints
are placed on functions related to the structural stresses on the vehicle.
This type of problem is presented in-this paper by the calculus of varia-
tions technique where the constraint functions related to these stresses
are explicit functions of the control variable, the angle of attack, C.

I. INTRODUCTION

The purpose of this paper then is to derive the equations of motion
in an atmospheric flight and to formulate an optimization technique with
inequality constraints imposed on two functions related to structural
stresses encountered during the atmospheric flight. The two functions
chosen in this paper are the product of the dynamic pressure and the
magnitude of the angle of attack and the magnitude of the angle of attack
alome.




II, 'DERIVATION OF THE EQUATIONS OF. MOTION

When calculating a space vehicle's trajectory in the atmosphere,
it is appropriate to derive the equations of motion in a coordinate
system fixed in (rotating with) the earth because the earth's atmosphere
is assumed to rotate uniformly with the earth and the external forces
acting on the vehicle (thrust, lift and drag) are measured relative to
the rotating atmosphere. Also, the centrifugal and Coriolis accelera-
tion of a rotating earth affect the vehicle's motion.

In this paper the equations of motion are derived in a two-
dimensional polar coordinate system. To simulate a rotating earth, it
is assumed that this coordinate system rotates with an angular velocity
relative to some inertial coordinate system. This angular velocity is
measured at the launch point and is a function of the latitude and
aiming azimuth at launch.

In deriving the equations of motion, it is convenient to define
two Cartesian coordinate systems, The first of these systems (denoted
by X*) is space-fixed with its Y*-axis directed from the center of the
earth through the launch point and with its X*-axis directed along and
parallel to the launch azimuth., The second system (denoted by iE) is
earth-fixed with its coordinate axes coinciding with the space-fixed
system at the time of launch., This system rotates with an angular
velocity given by

w = wcos ¥ sin A, 2.1)

relative to the space-fixed system, 1In the above equation, w is the
earth's rotational velocity in the equatorial plane, { is the latitude
above the equatorial plane, and A, is the aiming azimuth.

First, the space-fixed velocity vector is derived in terms of the
earth-fixed Cartesian coordinate system, A transformation is then made
from the earth-fixed Cartesian system to a polar coordinate system which
is also fixed in the earth, The space-fixed acceleration vector is then
derived in terms of the polar coordinate system. Finally, by Newton's
second law the external forces acting on the vehicle are equated to the
mass times the acceleration. Taking the two components of this vector
equation yields the two scalar equations for acceleration,
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FIGURE 1

_ In Figure 1, i and 5 are uni; vectg;s in the space-fixed system with
i and j being parallel to the X" and Y axis, respectively. The unit
vectors k and } are parallel to the X; and Y, axis, respectively, in

the earth-fixed system. The unit vector &, is defined to be parallel to
the earth-fixed velocity vector and g4 is defined to be in the opposite
direction of the incrgasing_earth-fixed flight path angle, B The
relationship between k and £ and the unit vectors in the space-fixed
system is given by

cos W't 1i-sinwt]j (2.2)

o
n

sin w't 1 4+ cos w't j. (2.3)
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]

Similarly, the relationmship between k and 7 and the unit vectors in the
polar coordinate system is given by

=
|

sin (@E + ﬁE) EV - cos (¢E + ﬁE) Eﬁ (2.4)

™=
\

= cos (QE + 8E) Ev + sin (QE + ﬁE) éﬁ' 2.5)




The position vector in terms of the earth-fixed Cartesian system is
r = XEE + YEz. (2.6)

The time derivative of (2.6) in the space-fixed system gives the space-
fixed velocity vector in terms of the earth-fixed position and velocity
components

£ = XEE + %Ez + xEﬁ + YEﬁ, 2.7)

where the time derivatives of the unit vectors can be obtained from
(2.2) and (2.3) which are

(SN
]
1
€
S8

k=- ¢ sin 0t I - w cos W't (2.8)

W cos wti-ow sinwti=uw k. (2.9)

BN T
0

Substituting these values into (2.7) gives the space-fixed velocity
vector

r = ()’(E + W'Yp) k+ (YE - W'Xp) Z. (2.10)

The position and velocity components in (2.10) in the earth-fixed polar
coordinate system are

XE = r sin @E (2.11)
Y, =t cos g (2.12)
RE =V, sin (9g + o) (2.13)
iE = VE cos (@E + ﬁE). | (2.14)




‘Substituting back into (2.10) gives the space-fixed velocity vector, in
terms of the earth-fixed polar coordinate system components, which
becomes

!1-_ - {VE sin (CPE + "SE) + o'r cos CPE}R +{VE cos (cpE + 'SE) - w'r sin qJE}TB

(2.15)

Taking the time derivative of (2.15) in the space-fixed system and using
(2.4) and (2.5) gives the space-fixed acceleration vector

f= [‘.’E {sina (pg + 3p) + cos?® (9 + vSE)} + W' {sin (pp + 3g) 'cos Pg
- cos (@ + 9p) sin cpE} - w'r g {sin (g + 9) sin @

+ cos (@ + 13E) cos qJE} - W'Cr {sin (q)E + aSE) sin @

+ cos (@ + ;) cos (PE}] Ev + |:-VE(¢E + ;SE) {sin2 (pp + GE)

+ cos® (o + ﬁE)} - we {sin (o + 9p) sin @

+ cos (cpE + 'SE) cos cpE} - uW'r i)E {sin (cpE + 9;) cos ¢

+ cos (cpE + ﬁE) sir; cpE} - w'VE {sin2 (cpE + qSE) + cos® (qu + vSE)}

- w'2r {sin (cpE + ﬁE) cos @ + cos (cpE + «‘)E) sin cpE}:l ég'

(2.16)




In the earth-fixed polar coordinate system r and ¢E are

T = VE cos 6E (2.17)
VE
@E == sin 6E. (2.18)

Substituting these equations into (2.16) and after simplification (2.16)
becomes

= 12 = . 12 : ' =

= - +| — -
r [VE w' r cos 6EJ e, + [VEGE = + w %> sin 8E + 2w VE ( eﬁ).

(2.19)

This equation gives the two components of acceleration measured in the
earth-fixed polar coordinate system, The second component is in the
direction of the increasing flight path angle since +é13 was defined in
the opposite direction.
Ye
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Assuming the vehicle as a point mass subjected to the external
forces in Figure 2, the accelerations caused by these forces are equated
to the like components in equation (2.19) by Newton's second law,

This yields the following two scalar differential equations

VE=F;D cosafgsina- (g-w'zr) cos 'BE (2.20)
<« _F-D_. N 1 Ve .2

¥ = mVE sma+;‘§cosa+vg<g-—;-w r)sinﬁE-Zw',

(2.21)
where

F=F -AP (2.22)
D= %-pvg CDOA = qC, A (2.23)
N=%pV§Cl'qAa=qC;qAa=N4a (2.24)
e =3, (2.25)

where P and p are determined from some atmospheric model, ARDC or
Patrick for example. By instantaneously considering these quantities
as exponential functions given by

P = Poe'7(r'R°) (2.26)

“H(x-Ro) (2.27)

p=npe
o
y and p can be obtained by taking the inverse of (2.26) and (2.27),

respectively. The partial derivatives OP/dr and Jdp/dr which are needed
in the optimization equations would be

oP

Lo | (2.28)
%ﬁ = - up. (2.29)



o and Cyy in equations (2.23) and (2.24) are considered as functions
of Mach number, and their derivatives are ignored in the optimization
problem,

The equations (2.17), (2.18), (2.19), (2.20) and the equation for
fuel flow rate,

T = constant, (2.30)
[o] SPV

will form the system of differential equations of motion that have to
be solved simultaneously to determine a trajectory. The next section
will discuss the method of determining the optimum control function,
the angle of attack as a function of time, such that a trajectory
minimizes time between two sets of boundary conditions subject to
equality and inequality constraints.

ITI, CALCULUS OF VARTATIONS FORMULATION

Normally while in the atmosphere a vehicle is constrained to fly
a non-lifting trajectory, after tilting has been initiated shortly after
launch, in order to minimize the structural stresses associated with
appreciable angles of attack. In essence this implies that the aero-
dynamic 1ift is sacrificed which may decrease the performance of the
vehicle depending on the lift to drag ratio., The problem of employing
an angle of attack during an atmospheric flight can be used if con-
straints are placed on functions related to structural stresses on the
vehicle, This type of problem can be treated by the calculus of varia-
tions technique where the constraint functions related to these stresses
are explicit functions of the control variable, the angle of attack, Q.

Two such constraint functions are used in this paper:

g1(x, o) = QX - q|a| z 0 (3.1)

g-(a) o:i -aF z0, _ : (3.2)




where QX and Q. are numbers depending on the design limits of the
vehicle and x denotes the set of state variables (r, Vg, 9, , M),
The first equation (3.1) implies a constraint on the product of the
dynamic pressure, q, and the magnitude of the angle of attack,
whereas (3.2) constrains the magnitude of the angle of attack.

The variational problem may now be stated as follows: It is
desired to determine the control function, a(t), such that the expression

tg
M = f fo(x, @) dt + olx,, t.] (3.3)
tO

is maximized subject to the inequality constraints (3.1) and (3.2) and
the differential equations of constraint

xi = f]'_(x’ Q, t) is= 19 vesy I (3‘4)

with the boundary conditions
xi(to) =X (3.5)

and

Wg(xf’ tf) = Ez ﬂ = 1, LI q’ (3.6)
where the wz's are the terminal constraint functions on the state.
variables.

In order that (3.3) is maximized the following necessary conditions
must hold (see Reference 1): )

by S0 k=1, 2 3.7

'l=-%fl i=1, ..., n (3.8)
i

%§L=0, (3.9)




where

n 2
F' = £ (x, o) + z A (8) fi(x,a,t)-ii}+z e 8 (%5 ), (3.10)
k=1

i=1

and the boundary conditions

. d)
ACEg) = 5 - Z ) <Zx. (3.11)
= | 1t=tf
n
f (x., ) + A () £o(x., o) = %-BQ -(312)
o g2 Yt ivof! tivhEer Of Ve ot Sq .
i=1 =1 .

where the A.'s and ;,'s are Lagrangian multiplier variables and the vz's
are multiplier constants evaluated at te.

Equation (3.8) can be written as

QF _ 4 (QF' _ .
ey 0; (3.13)

N n
a_E‘L d aF' P _d_ 1 aF' Y .al'_ -
Z [ax & (0)| = | ) SRS (3.14)
i=1 i=1
If F' is not an explicit function of time, then (3.14) becomes
n
1
- F + Z a—i—- }'ci = - C = constant, (3.15)
i

et
(=)




Then, by equations (3.8) and (3.10), equation (3.15) becomes

n

£ ) + ) A () £5(x, 0) = C. 616

i=1
If the end conditions (3.6) are not explicit functions of time, then

= . 90
c=- 3t ° (3.17)

since (3.16) is to be satisfied from t, to te.

1f we wish to minimize flight time between the boundary conditions
(3.5) and (3.6) for a vehicle whose motion is governed by the differential
equations of motion in part I, the expression (3.3) reduces to maximizing

Q[xf, tf] = - tf (3.18)

and the function f,(x, @) is zero. Maximizing -ty is equivalent to
minimizing tg. Equation (3.10) becomes

n 2

F' = Z}\i(t) fi(x’a)-ii}-{-z Hye gk(x’ a)’ (3.19)
i=1 k=1

where the constraining equations (3.4f are given by

v

y = _E. i =

gﬁ - sin ﬂE £, (3.20)
T = Vé cos 3, = (3.21)
: - F - D H » - - |2 =

VE = cos o - — sin « (g - w r) cos ﬂE fx (3.22)

11




E E E r
(3.23)
Fv
= - = fg, 3.24
g0 ISPV S ( )
and the inequality constraints are given by (3.1) and (3.2). The
terminal constraints (3.6) of the problem are given by
Yo =1y -r(e) =0 — (3.25)
Yo = Ve = Vp(tg) =0 (3.26)
\!I3 = ﬂf - ‘SE(tf) = 0, (3‘27)

where rg, Vg, and 3 are the desired end conditions,

Applying equation (3.8) to (3.19) and assuming that (3.1) and (3.2)
are satisfied results in the following system of differential equations:

i1=-%=0 (3.28)
§\2=_-g—f.'.—=--2\ﬁ-[p}]sina+—1-t—n-g cos §E+{7(FV-F)+|.,LD}COSG

2
m(E_ 12, 54
+ = <Z 2g - W %) sin 6E] (3.29)

12




. ' aF'

' 2\ .
)\3=_-a—‘;£=-}\2cosgE+E‘-’-;-[N31ncx+Dcosa]
2
2 ] mVE ]
+ E%% [D sin o - N cos o + — sin aE] (3.30)
+—?¥k{—1— (F - D) sin o + N + E ) Vi
V. =V - sin ¢ cos ¢ mg-—r--wrsmﬁEJJ
E ¢ E
- SF" . ]
M:-SEE-=)\2VE31nﬂE+}\3[(w'2r-g)sinﬁEJ

(3.31)
+ N [VLE'G‘E' g + w'2r> cos aE]

')\5=_-?£.'.=3‘?3[(F-D) cos a-Nsina]+-nTé‘}L[(F-D) sin ¢+ N cos Ot:l.

E
(3.32)
Applying (3.9) to (3.14) yields the equation
OF' _ _ Ny .
S - T —[%5 (F-D+Ny) + M\ VE a} sin ¢
(3.33)

A

+ [& (F" D + N4) - }\3 N4a:l cos O = 0.
E

The angle of attack is determined from the iterative solution of (3.33).
If at some time the angle of attack does not satisfy the inequality
(3.1), then a q[al constraint exists. During this constraint period,

13




the angle of attack is computed by

* - X «
o Lqm—’ (3. 34)

where T%T-determines the sign of ¢*. The multiplier py during the con-

straint is given by

pny = [fa’ +m{:- %%Ll . (3.35)

%1, 3
T H1Yyq  or
%81 3q
" M1 ¥q v

respectively, The constraint ends once p; goes to zero.
If the inequality (3.2) is not satisfied by the angle of attack
from (3.33), the angle of attack becomes

o =% O, | (3.36)

where ¢, assumes the sign of (¢ determined from (3.33). During the con-
straint > is given by

up = [faLa +m [- ggzlm . (3.37)

Again, the constraint ends once - goes to zero.




It must be noted here that both inequality comnstraints cannot be
considered simultaneously. If, for example, (3.1) is considered, then
puo would be zero; or vice versa, if (3.2) is considered.

The problem remains now of selecting the initial values of the
Lagrangian multipliers such that all of the necessary conditions and
the boundary conditions (3.25 - 3,27) are satisfied. First, it is
noted that A;(t) is a constant by equation (3.28). Furthermore, since
pg(tg) is allowed to vary in the problem presented in this paper, A;(tg)
is zero by virtue of (3.11). Since f,(x, @) is zero in equation (3.10{,
the system of equations (3.29 - 3.32) is homogeneous in the A's. This
property makes one of the initial values of the A's arbitrary. In this
paper, we have chosen

Az(to) = Azo = 1. (3.38)

By specifying an initial angle of attack, o, and using (3.33), the
initial value of A\, is given by

Mo = - %‘) + <Z%E>. (3.39)

Furthermore, by specifying an initial angle of attack rate, éb: and
differentiating (3.33) with respect to time and using (3.28), (3.29),
Aso0s and Ag0, Ao can be determined, Since equations (3.29 - 3.32)
are independent of A5, the initial value of A5 can be taken as zero.

Thus, O and (o are used to isolate the terminal constraints (3.25 -

3.27). Once these terminal constraints have been satisfied the terminal
values of the A\'s are by (3.11) and (3.25 - 3.27)

7\2(tf) = Vi 7\3(tf) = Vo, and M(tf) = Vz.

Since, in equation (3.12) the Wg's are not explicit functions of time,
(3.12) is given by

n

2 A (e £, (xg, af)=-%2;= const, (3.40)
i=1

which becomes (3.16) evaluated at te.

15~



IV, APPLICATIONS FOR A DIGITAL COMPUTER PROGRAM

In this section, a computational scheme is given suitable for a
digital computer program. First, the inequality constraints on qlal
and ¢ are ignored. This is the basic program, and only slight modifica-
tions are needed to include the inequality constraints which are given
after the basic scheme.

A, Application Without Inequality Constraints

1. Input Data Needed

Cons tants: go, Ro’ Ci, Co Az’ ¥, w, A,

Initial Conditiomns: V, , 3

PEo’ o’ 'Eo Eo
Tables: Cpo Cﬁ, Mach

Isolation Parameters: g, éb

. . 2 2
Vehicle Data: Fv(lbs), Ispv(sec), A=), Ae(m ), Wo(lbs).

2., Preload Computations

m, =W, + Cy 4.1)
fy

m= - o (4.2)
2 ‘spy,

Fy(kg) = F,(1bs) + Cj (4.3)

w = wsin Az cos “4.4)

GM = g  RE. ‘ (4.5)




To compute Apo and A4p, let

a.

T -y 4.6)
a.

K4 = - ‘£E— . (4.7)

Then equation (3.33) becomes
£, M Ja+ N Kg=0 (4.8)
at ty: Azo = 1, = qo.
Then,
Ao = - Ky + Jge (4.9
Taking the time derivative of (4.8) gives

A Jg + A3 Ja + MKy + Ay Ky = 0, (4.10)

To determine :14 and 1'(4, we compute:

1 Po

= In— 4,11

H r - o o] ( )

-1 1nf2 (4.12)

4 r - R, P *

D, = -g-‘l% = - (4.13)
D 2D

Dy = == . (4.14)
A &

17




[

[

[
=

De
|
o
e
+
1=

"

N4 = Néli' + N42 VE

K .
Ky = S;A == [{él - Ngq - 7(Fv - F)}-cos a + N; sin

K 1 .
Kyn = %v& == [(D - N4go) cos a + Ny sin ¢ - mK4]
E E
= XKe L + 2N, b sin Q@+ N
Kyq = > av. (F - D) s Sin o cos
E .
then

J4=%[-ﬁu4+{ﬁ4+7i‘ (F, - F) -ﬁ-N&}sinoz

+{(N4+F- D) c'x+fi}cos oz]

e
o]

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
(4. 20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)




and

Ky = Kga0 + Kgaof + K42‘.’E - 3 Kq. . (4.26)

Substituting equations (3.29) and (3.30) for 5\3 and 7\4 into (4.10) and
evaluating at ty with Ao and Ay and using the above equations Axo
becomes

7\20 = El + E2, (4.27)

where-

E; =~ {34+ Aso I.<4+ Ja [mvi (N sin qg + D cos ap)
. . o

mV2 .
+ __Z__ D sin - N cos + Eos'n +-B£-
mV2 ao ao r l ’sE VE
Eo ° o

" 2 (4.28)
+ %’_w_ ]+ K, [(w' ro - 8) sin o
Eo o
12
+ <, - + cos g
r V. V.
o E, E, o
and
E, = - J, cos + K, Vi, sin . (4.29)
2 4 ﬁEo 4 VE, ﬁgo

3, Trajectory Integration and Isolation

At a time, ty, the equations of motion (3.20 - 3.24) and
the "lambda dot" equations (3.20 - 3.32) are numerically integrated
from ty to tyt;, where the variables gqg, r, Vg, 9, Ass Az, M, and As

19




needed to start the integration are given, have been precomputed, or
have been integrated from the ty_, time point. The atmospheric pres-
sure and density are determined from an atmospheric model subroutine
incorporated into the program, The lift and drag coefficients, ﬁg and
Cpo> are determined by Lagrangian interpolation as functions of Mach
number. The angle of attack at ty is determined from the following
subroutine,

Compute f,: The initial ¢ to begin the iteration is taken
from the ty_; time point.

If £, < Tol., @ has been determined, (Tol = Tolerance)

If fy > Tol., we go to equations (4.30):
£

oz=oz-?o-‘, (4.30)
o7

where

of 4
f&:.a_aﬂ=-}\3[(F-D+2N4) cos o:-Nsino,'jl

- %ﬁ {(F - D+ 2N,) sin o + N cos aJ. (4.31)
E

1f |f$| < Tol, then ¢ has been determined.
a

£
If |§%| > Tol, compute a new ¢ from (4.30) using the
a

preceding ¢ to compute fa and f' , and repeat this pro-

f
cedure until |?%| < Tol,
04

20




Trajectory Isolation:-

~

i A trajectory cuts off on local space-fixed circular
velocity - the program may be modified to cut off on any velocity - and
isolates altitude and the space-fixed flight path angle. Since the
vehicle's motion is measured in an earth-fixed coordinate system, a
transformation is used to compute the space-fixed values for velocity
and the path angle. The relationships are

1/2

VE = [VE + 24 Vgr sin §; + w?r? cos? W] (4.33)
and
Vg/V* cos 3 '
8% = tan-1 L ] ; (4.34)
1= (VE/V*)2 cos? S

0o and éb are then used to isolate these end conditions. The isolation
scheme given in Reference 2 is well suited for this problem.

4, Additional Equations Useful in Trajectory Analysis

The attitude of the vehicle measured from the vertical
earth-fixed launch point is given by

X = g + 3 + 0, (4.35)
and the space-fixed attitude angle is given by

*

X=X+ t., (4.36)

The range of the vehicle measured on the surface of the earth from the
earth-fixed launch point is given by

XXX = R, P> (4.37)
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and the range measured from the space-fixed launch point is
* \)
XXX = XXX + Ry, wt. (4.38)

B. Application with q|la| Constraint

Input Data (In Addition to IITA): QX, Asp, A4o. Here QX is
a constant which q|q| cannot exceed during the trajectory; Ao and Ngo
are used as the isolation parameters rather than <y and Op, since the
angle of attack is determined from the constraint equation and cannot
be used as an isolation parameter. The computation of equations (4.9 =-
4,29) is ignored in this modification of the program,

The following subroutine is used:

We compute:
g, = X - QIals (4.39)

where ¢ has been determined from the iteration of fa.

If g4 20, py = 0 and the angle of attack determined from the
f_ equation are used in the main routine of the program. 1If g, <0,
tﬁgn the angle of attack becomes

_X - .
o = e (4.40)

M1 = [fal):d* +m [q T%‘TL;?;. (4.41)

Equations (3.29) and (3.30) are then augmented by

and

- M2 (HQIQ|)

pa (¥, lal),
respectively, The constraint period ends when |, goes to zero.
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C. Angle of Attack Constraint

Input needed: Op> Azos Ao

The following subroutine is used:
We compute:
g2 = Of - OF. (46.42)

If g 2 0, yuy = 0 and the angle of attack determined from the
f, equation are used in the main routine of the program.

If g> < 0, then the angle of attack becomes
a=* o, (4.43)

where ¢, assumes the sign of ¢/ determined from the fy equation and

M2 = [fdlm +m [ZO!C]- (4.44)
c

The constraint period ends where j,, goes to zero.

V. CONCLUSIONS

The optimization technique given in this report has been success-
fully applied to the Saturn V and Saturn IB vehicles. The equations
were programmed for the IBM 7094 digital computer. The results, which
are to be published later, show that an increase in orbital payload
can be obtained as compared to the non-lifting first stage trajectories.
This increase of orbital payload is consistent when the q|a| product is
constrained to a reasonable value., The existing program does not con-
tain the angle of attack constraint at the present time, but it is felt
that this can be easily incorporated into the program,
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